

Announcements

Prelim 1: Thursday, Feb 12. Statler Auditorium. 7:30-9pm

Greedy and Dynamic Programming: Covers hw1-2, sections weeks 1-2, lectures through 2/4

Other prelim info and practice questions, hw and section materials and solutions posted on Canvas

Hw2 grades will be opened tonight & quiz also

Next plans: Feb break, then very short hw due Friday as usual

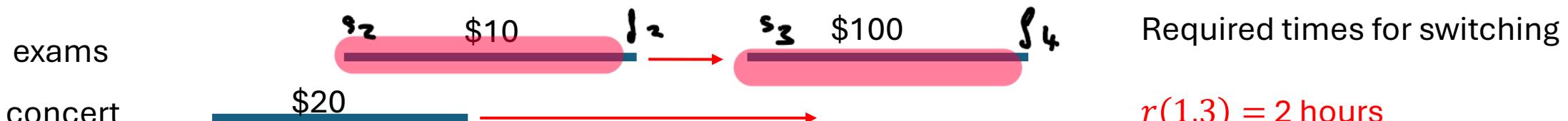
Plan today: quick review of hw question 3, and then start new material

Event planning

Input: $[s_i, f_i]$ price they offer to pay p_i

What subproblems to use:

→ smaller problems you want to solve


$$\text{Opt}(i) = \max (\text{Opt}(i-1), p_i \text{ ?})$$

nat using i

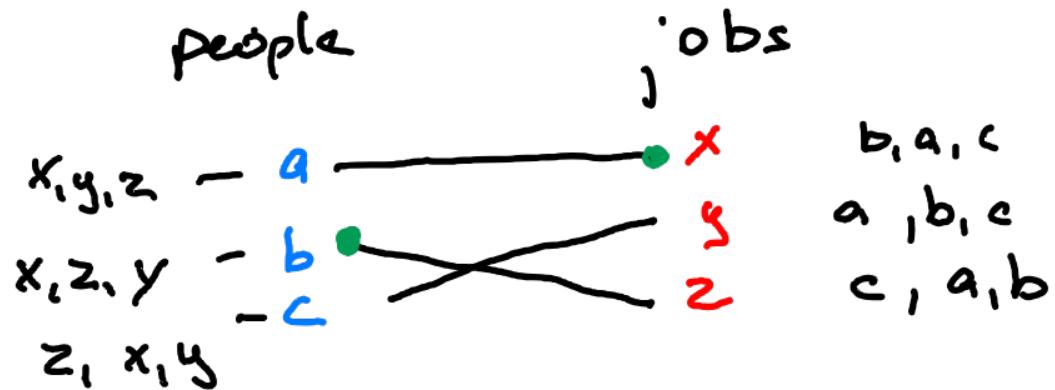
using i

1) Opt(i) = value of best solutions with items 1...i:

2) $\text{Opt}(i)$ = value of best solutions with items 1...i **with item i included:**

Option (1) not working

$$\text{Opt}(1) = 20$$


$$\text{Opt}(2) = 20$$

$$\text{Opt}(3) = \max (\text{Opt}(2), 100 + ?)$$

need item here that is
not in our DP table

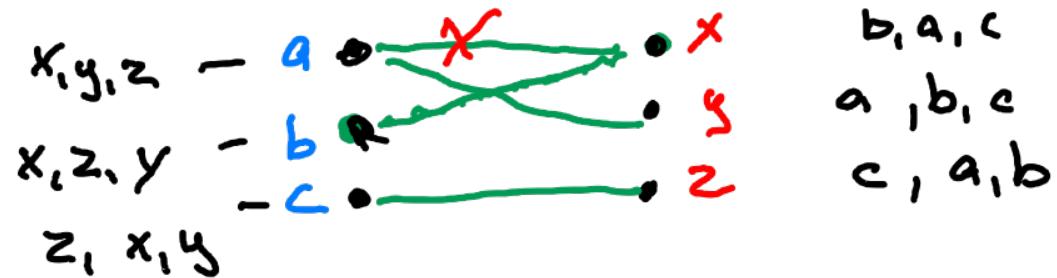
Stable Matching I:

The problem and its applications

Is solution above OK?

(b, x) pair : prefer
each other. to their partner
call instability

may cause solution
to be abandoned


used for medical resident matching
NY city high school

matching : assigning people to
jobs - at most one job/person
- at most one person/job

matching is perfect
if all jobs/people are
assumed

Question:
is there always a
stable solution & can we
find it
stable = no instability

The Gale Shapley Algorithm

steps:

$a \rightarrow x$

$b \rightarrow x \Rightarrow a$ gets rejected

$a \rightarrow y$

$c \rightarrow z$

while there is an applicant who is unmatched & there is a hospital they have not applied to

- apply to top option where they were not previously rejected
- keep best of those that applied, reject rest

end while

Return current matching

Properties of the Gale Shapley algorithm

- ① keep getting rejected & have to apply to less & less preferred jobs
- * ② hospitals: current match only improves
once matched will remain matched

Assume n applicant & n jobs

Does this find a perfect matching

Claim: yes it does.

Proof: by contradiction: \exists applicant a & job x
both unmatched

a^*

$\bullet x$

Algorithm end: a applied to job x
but hospital with any applicant ever remain matched
a contradiction

Join by Web PollEv.com/evatardos772

How many offers can be made overall running the Gale Shapley Algorithm with n applicants and m positions

- A. $O(n)$
- B. $O(n + m)$
- C. $O(nm)$
- D. $O(n^2m^2)$
- E. Can be infinite

while there \exists unmatched applicant
 ...
 - apply to next job on their list
 - hospitals keep their favorite *
 reject all others

end while

applicant only apply to every school once

Does Gale Shapley produce a Stable solution

Friday

Is it better to propose or to be proposed to?